A Fast Neural Algorithm for Patten Detection Using Cross Correlation in the Frequency Domain
نویسنده
چکیده
Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cross correlation in the spatial and frequency domains are presented. Furthermore, correct formulas for the number of computation steps required by conventional and fast neural networks given in [1-3] are introduced. A new formula for the speed up ratio is established. Also, corrections for the equations of fast multi scale object/face detection are given. Moreover, commutative cross correlation is achieved. Simulation results show that sub-image detection based on cross correlation in the frequency domain is faster than classical neural networks. KEYWORDSConventional Neural Networks, Fast Neural Networks, Cross Correlation in the Frequency Domain.
منابع مشابه
A Modified Cross Correlation in the Frequency Domain for Fast Pattern Detection Using Neural Networks
⎯Recently, neural networks have shown good results for detection of a certain pattern in a given image. In our previous papers [1-5], a fast algorithm for pattern detection using neural networks was presented. Such algorithm was designed based on cross correlation in the frequency domain between the input image and the weights of neural networks. Image conversion into symmetric shape was establ...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملFast Sub-Matrix Detection Using Neural Networks and Cross Correlation in the Frequency Domain
Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks based on cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cr...
متن کاملFast Packet Detection by using High Speed Time Delay Neural Networks
Fast packet detection is very important to overcome intrusion attack. In this paper, a new approach for fast packet detection in serial data sequence is presented. Such algorithm uses fast time delay neural networks (FTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is prove...
متن کاملFast Object/Face Detection Using Neural Networks and Fast Fourier Transform
⎯ Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005